
The Next Steps For
Aspect-Oriented Programming Languages

(in Java)

Jim Hugunin
Xerox Palo Alto Research Center

hugunin@parc.xerox.com

Based on work and discussions with:
 Erik Hilsdale, Wes Isberg, Mik Kersten and Gregor Kiczales.

Aspect-oriented programming (AOP) languages have reached an important milestone –
developers are beginning to use them to build real commercial systems [1]. Just like in
the early days of Smalltalk, many developers can get great advantage from using these
new technologies despite the rough-edges that are always present in a first-generation
technology. But just as in the early days of object-oriented programming (OOP) there
remain many interesting problems to be solved to further improve the usability and power
of this new technology and to maximize the benefits it can provide to developers.

The AOP languages that are currently in most active use (Hyper/J [2] and AspectJ [3])
are both built on top of the Java programming language and platform. This is not a
coincidence, but rather reflects the usefulness of this platform for developing new
programming language technologies in a form that is accessible to real-world developers.
The lessons learned from designing these languages on top of Java appear to generalize
well to other languages. They’ve inspired many other projects which extend languages
ranging from C to C++ to Smalltalk with support for AOP using the same or parallel
language constructs as AspectJ or Hyper/J [4, 5, 6, 7, 8].

While there is an emerging interest in the very broad field of aspect-oriented software
design [9], this paper focuses more narrowly on the programming languages and most
basic tools that form the foundation of any such field. There are four key areas of
research that can improve the power and usability of these young AOP languages --
improved separate compilation and static checking, increased expressiveness for
pointcuts, simpler use of aspects in specialized domains, and enhanced usability and
extensibility of AOP development tools.

In order to provide concreteness this paper explores these areas with a focus on AspectJ.
These areas are also relevant for other AOP languages built on Java (such as Hyper/J)
and for other AOP languages built with similar languages constructs to AspectJ such as
those referenced above.

Separate compilation and static checking
Java’s ability to support separate compilation and separate static type checking provide it with
many practical benefits for improving the modularity of systems. When extending Java to
support AOP, it is important to work with its existing powerful support for good modularity. In
this spirit, both AspectJ and Hyper/J provide good support for the separate static checking of
modules. Hyper/J uses the addition of dummy abstract methods to allow each individual unit to
be checked separately. Advice in AspectJ is statically checked for typing and control-flow errors
in the same way that standard methods are in Java. Even though separate static checking is
possible, each of these language implementations currently require a static compile or link
process that operates on a larger system.

Since these languages already support separate checking, the easiest way to achieve separate
compilation is by moving the weaving process from a static pass over a large system to a dynamic
process that can operate on individual classes at load-time. Java provides good support for this
through its extensible ClassLoader class. A good first step towards separate compilation for Java-
based AOP languages would be to design a custom ClassLoader that can implement weaving on a
per-class basis at load time. Further down the road, the need for playing games with
ClassLoaders could be eliminated by adding the right small extensions to the executing virtual
machine.

Equally important as supporting separate static checking and separate compilation where it makes
sense is recognizing those features that cannot be implemented with simple -minded per-class
separate compilation. Some powerful constructs for capturing crosscutting concerns operate on
the static structure of a program and must be taken into account at compile -time. An example of
one of these features is AspectJ’s ability to declare compile -time errors using its existing pointcut
designators, i.e.

 declare error: call(Point.new(..)) && !within(PointFactory):
 “Points can only be made in PointFactory”;

This code enforces the standard Factory design pattern’s rule – in this case that new instances of
the Point class can only be created by the PointFactory. To generate the most useful feedback for
a developer, this rule should be enforced at compile -time. This requires that the relevant aspect is
present when compiling any classes that might try to create a new Point -- which violates the
standard rules of separate compilation. There are many additional powerful ways to improve our
handling of crosscutting concerns by weakening the restrictions that each class must be separately
compilable and statically checkable. These including more sophisticated handling of checked
exceptions, control-flow, and type systems.

Currently, the only effective approach to handling concerns that crosscut the static structure of a
program is to perform a sort of quasi-whole program analysis. If we can more clearly define the
structures that make up a compilation unit these concerns can be handled more cleanly and this
should also encourage the development of more language features that take advantage of this.

The first step to defining an appropriate compilation unit is to recognize that programmers are
already working with units that are typically much larger than a single class. Java’s support for
sealed packages and .jar files could provide an initial practical unit for separate compilation that
is well defined and yet larger than the single class. Moving further into the future, languages are
going to have to be extended to allow programmers to better specify these units of interest.

Expressiveness of pointcuts
Pointcuts allow a programmer to select a group of interesting points in the execution of their
program and give those points a name. Being able to give a name to a collection of interesting
points provides the well-known benefits of procedural abstraction. For many of these pointcuts,
the best way to specify them with current language technology is through an enumeration of
specific methods. Here’s how I might specify all the join points at which a FigureElement moves
in AspectJ:

pointcut move():
 call(void Point.setX(int)) || call(void Point.setY(int)) ||
 call(void Line.setP1(Point)) || call(void Line.setP2(Point));

While this sort of description is useful, it is both cumbersome to write and brittle in the face of
many reasonable changes to the Point and Line class. For example, if a developer was to add a
“void setXY(int, int)” method to the Point class, it wouldn’t be captured by this pointcut even
though it made the Point move. This problem can be addressed by using pattern matching to
provide a more flexible description of the join points of interest:

pointcut move(): call(void FigureElement+.set*(..));

This pointcut will capture the new “void setXY(int, int)” method; however, it would also capture
a new method called “void setup()” that was not involved in moving a Point in any way. In order
to write pointcuts that are robust to common refactorings or additions to an existing system, we
want the pointcut to directly express the property they are interested in. The closest that we can
come to this with existing languages is to capture every time that a field in FigureElement is
changed:

pointcut move(): sets(* FigureElement.*);

This pointcut still doesn’t quite specify the exact points that we’re interested in. Here are a few
natural language versions of the sort of precise statement we’d like to be able to make. “Any
time that a field whose value is referenced under the control-flow of the FigureElement.paint()
method is changed.” Or possibly this could be captured more directly as “Any time that data in
my system is changed that will lead to a change in the computation performed by the
FigureElement.paint() method.” These sorts of descriptions talk about how data flows through
the different parts of a running system. One important step towards increasing the expressiveness
of pointcuts would be to provide a language for talking about dataflow – perhaps in a form that is
similar to AspectJ’s current support for talking about control-flow.

Aspects in specialized domains
Current AOP languages do a good job of capturing the semantic structure of an OO program.
The join points described in AspectJ can capture well-defined points in the execution of a
program such as the execution of a particular method or the initialization of a new instance of a
class. These semantic points are created based on the well-defined behavior of the source or
bytecode for a system.

Unfortunately, many OO systems run in an environment that changes the actual execution
behavior from the language or bytecode specifications. Examples of this include distribution
through RMI or the many forms of container management in an Enterprise Java Server. These
systems operate on classes at a meta-level very similar to how an aspect-weaver works. As more

code runs in these managed environments it will be important for AOP systems to interact well
with them.

The first step is to better understand these domains and to implement a few custom solutions to
integrate aspects with an EJB server. The longer term goals would be to propose a general
solution to this problem. It is possible that a single general purpose AOP language could be used
to implement the various special-purpose meta-level transformations that each tool does today. If
this doesn’t prove possible then a shared meta -model of a Java system that all of these tools could
manipulate might work.

Another way that AOP can be applied to specialized domains is through the creation of domain-
specific aspect libraries. AspectJ has an extension mechanism that is modeled very closely on
standard OO extension that supports both the equivalents of composition and inheritance for
aspects. While these mechanisms have been used to build many example libraries they have not
yet been tested in practice.

The best reusable libraries are built by taking existing concrete systems and finding shared
structures that can be abstracted into reusable components. Right now the AOP community is
just beginning the process of building serious concrete systems. In the near future this should
provide a sufficient base of experience and code that can begin to be mind for the appropriate
reusable pieces. I expect that when this happens that it will lead to pressure on AspectJ’s
extension mechanisms to be expanded to handle the creation of these reusable libraries.

While aspect libraries can provide some domain specific support in a general purpose AOP
language such as AspectJ, it is likely that some domains will be important enough to warrant the
creation of domain-specific AOP languages. Some engineering approaches to encourage that sort
of work are discussed in the next section.

Usability and extensibility of tools
Current AOP languages are useable today on real systems of medium-size. The ability to use
these tools on real software projects is valuable both for the developers who use them and for the
research community who can see what does and doesn’t work in practice. Much of the credit for
the ability of these tools to move so quickly from research ideas into useful systems belongs to
the well-defined platform that the Java language and virtual machine provides to build on top of.

There are still technical hurdles that need to be overcome to use these tools on very large
programs or to make them as easy to use for smaller systems as Java is. These include support
for fast incremental compilation, for the optimization of woven code, for effective debugging, and
for integration with or duplication of the full feature set of standard OOP IDEs including features
such as code insight.

Overcoming these technical hurdles is important for evaluating the success of the AOP paradigm.
The productivity benefits of any new tool are always offset against the lack of polish on those
new tools. The more competitive tool support for AOP languages is with existing Java tools the
easier it will be to judge the effect these languages have on developer productivity. This
challenge is made harder by the fact that the greatest problems with modularity, and thus the
greatest potential for AOP to make a difference, are found in the largest software systems.
Building tools that can operate effectively on these large systems is an important engineering
challenge.

Given the technical work involved in building these systems they should be as extensible as
possible. To the extent that existing tools can be used to explore new ideas, the pace of research
in this area should be increased. The most primitive form of extensibility is available today in the
Open Source release of AspectJ which lets developers modify the system by editing the source

code. The next obvious step for this extensibility is to provide clearly documented and stable
public APIs for adding things like custom pointcut designators or new static program
transformations through extensions of the declare language space. This would make it easy for
other Java-based AOP languages such as DemeterJ [10] to be implemented as a compatible
extension to AspectJ. Further into the future, work is needed to determine the right way to enable
programmers to extend these languages without operating on the compiler.

Having an extensible compiler can clearly be valuable to research projects that are exploring
variations in the space of aspect-oriented languages. If this extensibility could be made
sufficiently attractive to the developers of non-AOP language extensions it could be an easy way
to capture some of these ideas as well. There are many good ideas in the programming language
research community ranging from parameterized types to multiple -dispatch to preconditions and
postconditions. If these features can be provided cleanly as extensions to an AOP language, this
will allow developers to use their favorite language technologies all together.

Conclusion
The current generation of AOP languages are now powerful enough that they can be used to build
real commercial systems. While this is an exciting milestone, it is not the end of the journey.
There remain many interesting research and engineering questions to explore that will further
increase the power these languages offer to developers. This paper focuses on one language in
the current generation, AspectJ, to identify four key areas of research that will lead to important
improvements.

These areas are relevant to other AOP languages as well. Static typing and separate compilation
are relevant for all AOP work that wants to interact effectively with a statically typed world. The
expressiveness of pointcuts is a fundamental problem in this space. The integration with specific
domains is a challenge that will occur for all AOP languages despite the fact that solutions to this
problem are likely to be platform specific. Figuring out how best to build usable and extensible
tools is a problem that any serious programming language project faces – it is impossible to judge
the usefulness of a programming language in the absence of real developers using it, and it is
impossible to convince real developers to use a language without high-quality tools.

References
1. Price, R., Real-world AOP tool simplifies OO development, JavaReport Sept. 2001

2. Hyper/J, http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

3. AspectJ, http://aspectj.org

4. AspectR, http://aspectr.sourceforge.net/

5. AspectS, http://www.prakinf.tu-ilmenau.de/~hirsch/Projects/Squeak/AspectS/

6. Apostle, http://www.cs.ubc.ca/labs/spl/projects/apostle/

7. AspectC++, http://www.aspectc.org/

8. AspectC, http://www.cs.ubc.ca/labs/spl/projects/aspectc.html

9. Special section on Aspect-Oriented Programming, Communications of the ACM Oct. 2001

10. DemeterJ, http://www.ccs.neu.edu/research/demeter/DemeterJava/

